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SECTION I

INTRODUCTION

The metal forming processes basically involve large amounts of elastic
deformation, and, due to the complexities of plasticity, the exact analysis
of a process is infeasible in most of the cases. Thus, a number of approxi-
mate methods have been suggested, with varying degrees of approximation and
idealization. Among these, techniques using the finite-element method take
precedence because of their flexibility, ability to obtain a detailed solution,
and the inherent proximity of their solutions to the exact one.

A prime objective of mathematical analysis of metalworking processes is
to provide necessary information for proper design and control of these
processes. Therefore, the method of analysis must be capable of determining
the effects of various parameters on metal flow characteristics. Furthermore,
the computation efficiency, as well as solution accuracy, is an important
consideration for the method to be useful in analyzing metalworking problems.

With this viewpoint in mind, successful efforts have been carried out
in analyzing various deformation processes, such as compression, heading,
piercing, extrusion and drawing by the rigid-plastic, finite-element method
(matrix method) [1]-[7].

The formulation of the matrix method, however, cannot be extended to
the sheet-metal forming analysis due to the following reasons:

(1) The classical variational formulation which is the basis of the

matrix method does not necessarily determine a unique deformation
mode. Physically, there is no inherent indeterminacy for work-

hardening solids, but this indeterminacy is due rather to the fact
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that the workhardening rate is not included in the mathematical

formulation of the classical variational principle.

(2) The kinematic assumption in the matrix method is not longer valid
for the sheet-metal forming process. As long as bulk deformation
or in-plane stretching are concerned, this kinematic assumption
that the magnitude of the rate of rotation is negligible compared
to the strain rate does not deviate much from the real situation
and yields solutions consistent with reality. Geometric nonlinear-
ity in sheet-metal forming, however, invalidates such a simplification.

The objective of the present investigation is, therefore, to develop and
establish a finite-element method for sheet-metal forming processes.

In Section II various forms of variational formulations are reviewed
in the light of uniqueness and geometry change which leads to a realization
of the necessity of new formulations. In Section III a new formulation is
obtained and the development of the finite-element model from it is described.
With the particular example of sheet-metal forming processes in mind, the
idealization of plane stress state and membrane theory is implemented.
Furthermore, the development is confined to the case of axisymmetrical
problems.

To establish the validity of the proposed method, three basic sheet-
metal forming processes are analyzed and the solutions are compared with
other available experimental data and numerical solutions. Hydrostatic
bulging is treated in Section IV. Punch stretching with a hemispherical
punch is discussed in Section V. To make the problem tractable, one moving
contact boundary is considered first by neglecting die profile; then the
analysis is extended to include two moving boundaries. In Section VI deep

drawing with a hemispherical punch is solved.




SECTION II

BACKGROUND

1. Uniqueness

We consider the quasistatic deformation of a rigid-plastic solid.
On a portion S of the surface S of this body are prescribed given velocities,
while the remainder ST of the surface S is subjected to given surface trac-
tions Ti. Assuming that these surface velocities and tractions are such
that the entire body is in a state of plastic flow, we want to determine
the stresses oij and strain rates éij throughout the body.

The conventional formulation of variational principle for this problem
is that among all kinematically admissible strain rate fields é;j’ the actual

one minimizes the expression (Hill [8]),
LA f oE* dv - f T.v* dS, (1)
g 11

where 0 is the effective stress, € is the effective strain rate defined by

o=V E-Jc!.o!.,
2 ij 1)
é = //Z /e..é..,
3 1y iy

respectively, where oij is the deviatoric component of Oij' Here a strain
rate field é;j’ defined throughout the body under consideration, is called
kinematically admissible if it is derivable from a velocity field v; which

satisfies the condition of incompressibility v; g " O+ throughout the body

’

o3
‘The comma denotes the differentiation with respect to coordinates, e.g.,




and the boundary conditions on Sv' The variational principle in this form

has been successfully aprn'ied to the analysis of metal forming problems,
such as extrusion [6]. As was found out later, and we will discuss this
shortly, the success is related to the type of boundary conditions prescribed
on the surface of the body undergoing deformation. In general, with the
variational formulation of ™ in Eq. (1), there is a question regarding
uniqueness of deformation mode even though the stress field is uniquely
determined [8], [9].

Consider an incipient flow in a rigid-plastic solid, workhardening or
perfect plastic, governed by the following partial differential equations
which are, of course, dual to the variational formulation m . With respect

I

to Cartesian reference frame Xy the following equations hold:

Equilibrium equations

Oij 3 = 0 in the absence of body force (2a)

Strain rate-velocity relationship

Me

= %{v. C+ v, L) (2b)

Constitutive equation

uoij = éij’ U being an arbitrary constant (2¢)

Yield criterion

0 = /[g;c{jo{j = H(e), where € is the effective strain defined (2d)
by € = f G if di = /2 o

Boundary conditions

"joij = ?i on S, (2e)

where nj is the unit normal vector to the

surface of the body; %i and Qi are prescribed

values
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(1)

Suppose that (oj: >

ég;)) is the solution to this boundary value problem.

Construct a different set of stress fieldsand strain rate fields (og%),’gi)

J

(2) o 2D (D)

ij ij ij ij

from point to point threoughout the body. Then, it is easily shown that this
(2)

set (0. ,égg)) satisfies all the governing equations except for the boundary

ij
conditions on Sv' On SV the velocity integrated from égf) should coincide

)

where O C is any arbitrary factor and may vary

’

with the prescribed value Gi’ Since strain rate-velocity relation is linear,
integrating égf) would yield CQi if ég;) is integrated to give Qi’ and there-
fore C must be unity on S . With this and the compatibility rejuirement the
deformation mode may or may not be uniquely determined. One example of a
well-established unique kinematic mode is in the plane-strain problem. In
the plane-strain condition, unless one family of the characteristics is
straight, the governing equation of the velocity field becomes the telegraphy
equation which is hyperbolic and, therefore, the solution is uniquely deter-
mined if the boundary curve is not along a characteristic.

It can be readily shown that under certain boundary conditions the

set (Oig),cég;)) also satisfies the boundary conditions on S and therefore

the deformation mode is clearly not unique. The following is a partial list

of such boundary conditions.

(1) SV

(2) Oi

0, i.e., all the boundaries are traction boundaries;

0 on SV;
(3) On Sv only the ratio between the velocity components are prescribed,
v,
i
€e.g., . = O
J
(4) Mixed boundary condition; e.g., a ncrmal component of Qi and a tan-
gential component of ?i are prescribed over the surface, or vice

versa. In this case, the additional condition of whether all the

characteristics meet on a curve in the region should be checked [10].




Concrete examples are (1) the expansion of spherical shells [11] or cylindri-
cal shells [12] under internal pressure, and (4) the indentation of a semi-
infinite body by a flat punch under the plane-strain condition [13], torsion
of a prismatic bar [10]. Among sheet-metal forming processes, hydrostatic
bulging belongs to case (2) and punch stretching to case (4) or (3).

Note that the physical meaning of these boundary conditions is that
the plastic flow is unconstrained and all or part of the body is free to
deform. Mathematically, this nonuniqueness is due to the fact that the
Levy-Mises theory, implied in the variational formulation ™ and also
appearing in the differential equations (2c), does not include the
"viscosity effect'" (in Prager's terminology [9]) and, therefore, this
indeterminacy would be resolved if the workhardening effect is taken into
account. In fact, for the workhardening solid there is no inherent indeter-
minacy in general; the apparent nonuniqueness is due simply to an inadequate
formulation of the problem. In proper formulation, traction rate ii must be
specified on ST’ and then from an infinite number of kinematically possible
modes the actual mode can be singled out by the additional requirement that
there must exist an equilibrium distribution of stress rate compatible with
the implied rate of hardening everywhere in the body and with the given

traction rate T; on ST. Besides, the workhardening effect is explicitly

brought into the constitutive equation in the form of

g

]
. ij
Hen o =
1) 5

0 (3)

where 0 is the time rate of G, h the workhardening effect of the material

being equal to %-gg. It can be shown that the constitute equation (3)
de

can always be reduced to the constitutive equation (2c), but not necessarily




vice versa. Therefore, for a perfectly plastic solid, specifying the trac-
tion rate does not resolve the indeterminacy. Hill, then, showed that among
all variational modes compatible with the boundary conditions for Vi on Sv
and the existing stress distribution Gij’ the actual mode minimizes the
following expression when geometry changes are neglected (Hill [8]):

T, = f nEr )% dv - f T.v. ds. (4)

ij g 11
T

Note that the virtual mode é;j in ™ should be normal to the yield surface
at the existing stress point in the stress space due to the compatibility
requirement with existing stress distributions. For statically indeterminate
problems, however, there is a coupling between stress field and strain rate

field and we have to solve these two sets of variables simultaneously.

2. Geometry change

When the effect of geometry change cannot be neglected during deforma-
tion, it is necessary to reconsider the specification of the loading on S,
and the stresses since the changes in shape and area of surface elements
are themselves unknown.

Let Xi be the position vector in a Cartesian reference frame at time t
and after an infinitesimal time 6t, X5 be the position. Let us call the
configuration at time t undeformed configuration and the one at time t + &t
deformed configuration. When an actual force dPi acts upon the area element
da at time t + 8t, there are various ways of reckoning this force.

First, the actual force dPi is referred to the deformed configuration,
or

dP. = n.o. .da, (5a)
1 J 1)

..‘IHIIII.I..IIlI-Il.I.l.‘dliIlﬂl.-ililiilluﬂ-uih-n--uh hoaicd
: e




where nj is the unit normal vector to the surface element of area da in
a deformed configuration. The stress tensor Oij defined in this manner
is called Cauchy stress tensor, or sometimes, true stress tensor.
Second, the actual force dPi is referred to the undeformed configura-

tion, or

dP. = N.S. .dA, (5b)
i~ 757

where Nj is the unit normal vector to the surface element of area dA in

an undeformed configuration. The stress tensor Sij defined in this manner
is called the first kind of Kirchhoff stress tensor, or sometimes, nominal
stress tensor. This tensor has the disadvantage of not being symmetric
and therefore awkward to use in a constitutive equation with a symmetric
strain tensor. Nonetheless, sometimes this stress tensor is used with
nonsymmetric velocity gradients [14].

Third, to obtain a stress tensor, which is symmetric and referred to
the undeformed configuration, we proceed as follows. Instead of the
actual force dPi, consider a force dEi related to the force dPO in the
same way that a material vector dxi is related by the deformation to the

corresponding vector dxi. That is,
= i
dP, = =— dPJ.. (5¢)

Refer this pseudo-force dﬁi to the undeformed configuration to define the
second kind of Kirchhoff stress tensor Ty5°

dP., = N.T..dA. (5d)

Using the expression relating the area change of the same element during

deformation [15],




nda = — N e (6)

where P and p are densities of the volume element before and after the
deformation, the relationship between different stress measures is obtained.

From Eqs. (6), (5a), and (5b),

. _ Oy kK
dPi = njoijda = oij 5 Nk axj dA
(7a)
= N.S..dA
J 1)
or
p. oX.
R e |
%) 59 5% i (7b)
and from Eqs. (6), (5a), (5¢), and (5d),
p, 90X, aX.
0
R . e (7¢)

All these different stress tensors become exactly the same when we
bring the deformed configurations to the undeformed configurations and
make them identical in the limit. Stress rates, however, are not the same.

Let Gui be the increment of displacement of the element; then

) .
T 1j kj 5;; Gui to the. first order,

neglecting plastic volume change. Or, in terms of rates,

%13 * %5 "V (8)

Let us compare the magnitude of the second term with that of the first term

in the right-hand side of Eq. (8). Since




(9a)

i 1
%; 7%, " 7 %fik * 7 %Yk (9b)

Now, if workhardening characteristics are given by the relation

g = H(E), (10a)
then E
|
- |
H'=~d—0 |
de :
e - (10b) i
oo |

€4k = e s
or 4
- _ %%k
o s€ik = — (10d)

a.. '
- - | PR G i
i °ij(1 H'] * 7 Okj%ik (11)
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From Eq. (11) we conclude that if the order of the rate of rotation &ij

is the same as or less than the order of strain rate éij’ and if the work-

hardening rate H' is greater than the stress level, then éij = &ij' Other-

wise, geometry change should not be neglected.
It could be shown [16] that when geometry change is taken into account,

the condition for continuing equilibrium requires that

aS. .

~5§l =0 in the absence of body force.
i

Using this condition, Hill subsequently derived the following variational

formulation [17]:

.

Ly Sl

. 2 1
* o * * o * 12
f h(eij) dv 5 J okjvi,kvj,iv dv fs Tivi ds. (12)
s

Formulation ms follows essentially the same line of formulation m, except

2

that now geometry change is considered. In the formulation m,, as well as

3

in m,, virtual mode must be compatible with the existing stress distribution

and the boundary condition on Sv. As has been discussed earlier for statically
indeterminate problems this is not an appropriate formulation.

Summarizing the development so far, the kinematic mode in sheet-metal
forming of a rigid-plastic solid is not uniquely determined by considering
the first-order expansion of the potential alone. Consideration up to
second-order expansion of the potential, or equivalent consideration of
workhardening rate in a physical sense, needs stress rate terms explicitly
in the variational formulation. When geometry change cannot be neglected,
these stress rate- are related to stress distribution, which is not known

for statically indeterminate problems. The approach of viewing the deformation




as determining the incipient flow by assuming the deformed configuration

coincident with the undeformed configuration clearly does not lead to a
workable variational formulation for sheet-metal forming of a rigid-plastic

solid. In this respect, it is intended to develop an appropriate variational

formulation in the next section.




SECTION III

FINITE-ELEMENT FORMULATION

1. Variational formulation

Let X5 be the position vector in a Cartesian frame of reference at
time t, the moment under consideration. Let Oij be the true stress at
time t and oij + doij the true stress in the same material element after
an infinitesimal time dt, both tensors being associated with the same
Cartesian axes. Let dsij be the increment in nominal stress in the same
element in time dt, based on the dimensions at time t. Let dui be the
increment of displacement of the element, then

a(dui)
ds.., = do,. - O,

ij ij j axk (13)

Requiring continuing equilibrium of stresses, the virtual work principle

gives
B(dui) 3 (du. ] r
[ (o.. +do.. - 0. ]6( J | dv = J (E, + dF.)8(du.) ds,
y LU1J ij Jooax ax; . j J
(14)
where T. = £.0.. and dT. = %.ds.., 2. being the unit normal to the surface
j i“ij j i1y 1

at time t. The variational formulation is obtained from Eq. (14) as follows:

B(dui) a(duj)

1 2 1
8¢ = 6{] 0,.de.. dV + [ = hde,. dv - f =0, . dv
y 1) v A ij v 2 k) axk axi

. J (T, + dT.)du, ds} = 0,
Ve S




j
ax, ox, )
) 1

1 (B(dui) B(du.)]
2

de.. =

ij {15)

and h = % H', with H' the slope of the stress and strain curve. The first
three terms of the functional ¢ represent the energy dissipated during the
time dt up to the second order. If it is assumed that the principal

axes of true strain-rate keep the same directions in the element and the
principal components of strain-rate maintain the constant ratios during

the time dt, the dissipated energy can be expressed directly [18] as
1 2
o dE_ + = hdE
Z(pp 2 p)

per unit volume, where dEp is the logarithmic strain components. The final

form of the functional becomes

1

o = f odE dv + 5[ H'(dfs)2 dv - f (T. + dT.) du. dS, (16)
v j j j

Sg

where dE is defined by

aE = /2] (dEp)z

2. Theory of the finite-element method

An important step in finite-element modeling is obtaining approximate
state equations in a region. The weighted residual method derives the state
equations directly from the governing differential equations. Let us write

the governing differential equation as

Lu - £ =0, (17)

14




where L is the differential operator, f is the known function, and u is

the solution. Withthe trial solution u*, Eq. (17) is not satisfied, but

there remains an error or residual R such that

R = Lu* - f. (18)

This residual is multiplied by weight function w and integrated over the
domain and the state equations are derived from the condition that this

integral vanishes with a given choice of weight function w:

f wR dv = 0. (19)

One well-known method among weighted residual methods is Galerkin's approach.
A more frequently used approach is the derivation from a variational

principle which is a dual expression of the governing differential equation.

Assume that a functional ¢, which is equivalent to the differential equation,

has been established. Let a continuum be divided into a finite collection

M of subdomains called elements interconnected at a finite number of nodes

N. If it is true that the total functional is equal to the sum of the

( y
contributions of each element ¢‘m), then we may write as follows:

o™ (u). (20)

o
N~

m=1

In each element let us approximate the solution with a linear combination

of trial functions vy such that

u = 2 a,v. (21)

holds, where o, are unknown coefficients to be determined later. By

substituting Eq. (21) into Eq. (20), we have

15




o m
¢= 1 ¢ (avy)
m=1

M
= mzl qﬁm)(ui) since v, 's are known (22)

9(a;).

The original ¢ of u is now discretized with a function @ of parameters oy
and the initial variatioral problem reduces to determining the o4 that

minimizes @. The minimization of ¢ with respect to o; may be written as
s = éﬂL—Ga =0
¢ = i s (23)

where § denotes the first variation. Since a,'s are independent, expression

(23) is equivalent to a set of simultaneous equations,

22 . ¢. (24)

This is, in fact, the classical Ritz technique. It is the choice of trial
functions that makes the finite-element method different from the Ritz
method and renders it successful; they are piecewise polynomials. Bsides,
the coefficients o called nodal values in the finite-element literature,
do have a definite physical meaning, such as displacement or velocity.

The trial function v, must satisfy certain requirements to enable
convergence as the subdivision into ever smaller elements is attempted.
First, as the element size decreases, the functions in the integral must
tend to be single-valued and well behaved in physical problems. Thisis
called the "completeness' requirement and is satisfied if the trial function

p

is of class ¢ when p is the highest order in the integrand of the
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functional. Second, the validity of the summation implied in Eq. (20)

must be preserved. This is called the "compatibility' requirement and is
satisfied if vy is of class Pl [19], [20]. When admissible trial functions
are used, the functional converges monotonically with an increasing number
of elements (or decreasing size) at a rate proportional to h2 where h is

a characteristic element dimension.

3. Modeling of axisymmetric problems

The general outline of the finite-element modeling stated above will
be expanded in detail for the case of axisymmetric thin shells subject to
axisymmetric loading. This particular problem is of interest since some
basic sheet-metal forming processes belong to this category. When the ratio
of thickness to the radius of curvature is sufficiently small, bending
moment and shearing forces may be neglected without serious error and the
membrane theory may be justified [21]. Moreover, the state of stress can
be treated as an approximate plane so long as %E is small compared with
unity, where t is the local thickness and s is the distance in any direction
parallel to the surface. We now may rewrite ® with the substitution of

t dA = dv to Eq. (16):
& a J G(dE)t dA + -;- J H'(dE)%(t dA) - f (T + dT)du; dA (25)

for the unit included angle of the element, where A is the area of the
element and t is the sheet thickness.

From the symmetry of the problem it is easily shown that the circum-
ferential direction and the meridian direction are the principal directions
and if the friction between the shell and the external agent is negligible,

the thickness direction will be the third principal direction. Within the

17




order of approximation taken in the formulation, the logarithmic strain incre-

ment may be used as the strain increment measure. Then the definitions of

strain increments are

» In —
dE dE S
dE = b { ™= o (26)
dE, dE, in X

if, during an incremental deformation, an element of undeformed length Sy
is stretched to the length s and the point currently at the radial distance
r, moves to the deformed radial location r. Subscripts r, 6 refer to the
meridian and the circumferential direction, respectively.

To bring the model closer to reality in the present investigation,
normal anisotropy is included and the corresponding stress-strain increment
relation is obtained, using Hill's criterion [13], as

ok - 48 - dE
(1 + R)or - ROe (1 + R)c6 - Ror (1 + R)G

> (27)

where R is the planar isotropy parameter which is the ratio of width strain
to the thickness strain in uniaxial tension. The effective stress and the

effective strain are defined+ as

= 2 2R 2
5= /g - THR %% * % e
af w L »[dE‘:" v R dBgdE + dEg. (28b)
V1 + 2R
+Note that H' = 2: must be consistent with these definitions.
dE
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The effective strain, dE, may be written in matrix form as

db = /% [de"D aE)Y/2, (29a)
where
|
i+ (2R R
O~ 20 + 27) : e
R l1 +R

The sheet geometry is approximated by a series of conical frustra, as
shown in Fig. 1. Linear trial functions, or shape functions, as they are
often called in the finite-element literature, are enough since the inte-
grand in the functional is of class Cl. The unknown coefficients, or nodal
values, are taken to be the incremental displacement at nodes. Then we may

write

(m) v T
(dvl,dwl,dfz,dwz)
(30)
(du,,du,,du,,du )T
L2203 4

for a representative element m, where dvi, dwi are the radial and the axial
components of incremental displacement of the i-th node. Then the incre-

mental displacement field inside the element may be written as

I+ g Bis 40 L

7 9 ) g
dg dw1

u = - ] (31)
dw 1+ t! 1 - tr|]9v2
0 0
2 2 e
2
=Eu(m)’

where t' is the local coordinate varying from the value of -1 at node 2
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dwl

(t* = +1)

|

l (:'.0)2
L (ry) l

1

Figure 1. Approximation of the Sheet Geometry
into a Series of Conical Frustra

to +1 at node 1. (See Fig. 1.) Due to this incremental displacement field,

an element of length o>

sp = Alrg), - )2 + Lz, - (29},

is stretched to a new length s,

(7]
|

= /f(ro)l = (ro)2 + dv1 = dv2}27+ {(zo)2 = (zo)1 + dw2 = dwl}z
(32)

J(rl - rz)2 + (z2 - Zlif,

where (ro)i, (zo)i are the radial and the vertical positions of the i-th
node at the undeformed configuration and (r)i, (z)i at the deformed
configuration. Since the element is straight, any point of t' in the local

coordinate is shown to have a global radial position T determined by

1+t 1 - t!

The new position r of the same particle is given by
b, 1 +t" (1 -1t")
T =71+ 5 dv1 ey Ty dvz.
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We are now at the position of calculating the strain increment field.
Recall the equation (25) and substitute Eqs. (32), (23), and (34) into it

to obtain

2 2
ot {(ro)1 = (ro)z + dv, - dv2} + {(zo)1 - (), + dw, - dwll 5
2 S2
90 - 1+ t) L
R R S e
In
To

(35)

(m)

We may write ¢~ °, a contribution from the m-th element to the total

functional ¢, in terms of nodal values, for unit angle included:
¢(m) = [ {odE + %-H'(dE)z t dA - [ (Ti + dTi)vi dA

- f a(/(g ¢)[aED a1/ 2 aa + 1 f H' (% t) [dE'D dE] dA - j ™

+ -2— Nu
(36)
where
rTl + dTl
T. + dT
T = 4 2 2
T3 + de
LT4 + d’I‘4
Minimization gives a set of simultaneous equations:
(m) 3(dE)T (ae)T
L M (//z t)o dETD dE]'l/2 ——— D dE dA + (Z-t)H' - ~ d
(m) 3 ~ ="~ (m) = "~ 3 D dE dA
% 9y gu™ = 7
(37)
[T e
From Eq. (35),
21
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B(dEl) a(dEZ) rl T rz 1 + ¢t
au1 au1 s2 2r
a(dEI) a(dEz) -(22 - zl) g
 (dE) 4 My s2
= (m) = g = = (38)
82 a(dEI) a(dEZ) —(r1 - rz) T
3u3 Bu3 s2 2r
B(dEl) a(dEz) (z2 - zl)
du du 2 0
4 4 3

Therefore, Eq. (37) becomes

(m)

m)

3¢
ag(

SRR, SO -1/2 2 T y
- I (3 t)5[3 dE'D dE]™/“QD dE dA + f (5 t)H'QD dE dA - J N'T dA = 0.

(39)

These equations, being valid for an m-th element, are now to be combined
under the condition of compatibility that the first-order derivative of
nodal value may be discontinuous across element boundaries but the nodal

value itself must be continuous,

3w g

du BE'(m) = (40)

~

4. Linearization

Eqs. (39) and (40) are nonlinear equations and it is very difficult
to solve them without linearizing. One way is to take an initial guess of
the solution to the equation as u* and rewrite Eq. (39) in terms of the
differences between this initial guess and the correct solution Au, where
= u* + Au, and expand it. Where the initial guess is sufficiently

u
correct

close to the correct solution, we may neglect higher-order terms of Au and

22




thereby linearize successfully. This can be done mathematically in a

systematic way and is called the Newton-Raphson method [22]. Say we have
a nonlinear equation Y(u) = 0, then we may expand into a series with respect

to the correct solution u, such that

0
dy 1(a% 2
b(u) = y(uy) + [anu=u (u-uy + 5{;;§Ju=u B~ up)" # -
0 0
e dy) * 1 dzw] 2 g
= P> + [—(E] Au+§(d—u-ij(Au) Fwee o= 0

If u and u, are sufficiently close, we may neglect the higher-order terms

and write
dy|* -
= p* - - 41
Y o= P* o+ [du) Au = 0. (41)
ﬁém)
In our formulations the equations to be minimized are - & = 0, and,
Jdu

~

therefore, the expressions corresponding to Eq. (41) are

W, i "(du) = l ag(™ |+ (42)
augm)augm) aui
i J
It may be shown that
5 T "bh T
3 =p(m)=%J—l—{[5+H' dE)(K'%PbT]+%Hb?2}tdA
MOMOC dE o e
(43a)
where
b = QD dE
K = Q'
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and that

3E(m) (m)

(
- . (43b)
Bugm)

where

p(m =-§ f-l- (G + H'dE)bt dA,
dE

™ - f N'T dA.
By assembling the equations obtained for an element, we finally have
P*Au = F - H* (44)

We evaluate the integrals with the Gaussian quadrature formulation.

We have yet to introduce the boundary conditions for solving a physical
problem. For an incremental displacement prescribed boundary, the corres-
ponding perturbations should vanish and, for a traction prescribed boundary,
the prescribed traction value will enter into the F vector. The solution
procedure is as follows:

(1) Assume an initial guess u;s and compute P, H, F corresponding

to this guess.

(2) Solve Eq. (3.31) and obtain Au.

(3) Obtain a new initial guess uy = up ¢ Au.

Repeat this process until convergence is achieved. Convergence is checked
by the fractional norm. A norm is defined by a square root value, i.e.,

full = VUf sud e e

2

and
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out = aup? e @up? e o

The fractional norm is the ratio !%5} and when, for subsequent iterations,

this value reaches the magnitude smaller than a predetermined value, say,

10-6, the iteration stops and the solution is thus obtained.
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SECTION IV {

HYDROSTATIC BULGING

1. Introduction

The ductility of sheet metal under biaxial stress is often examined

by means of the so-called bulge test. A uniform plane sheet is placed over
a die with an aperture and is firmly clamped around the perimeter. An in-
creasing hydrostatic pressure is applied to one side of the sheet, causing
it to bulge through the aperture. From the measured profile and thickness
of the plastically deformed sheet near the pole, it is possible to calculate
the local state of stress in terms of the applied pressure. If, in addition,
the state of strain is measured by means of a grid, the stress-strain char-

acteristics of the metal under biaxial tension are obtained. The advantage

of this test over any other simple one is that a greater range of pre-
instability strain can be obtained.

Hydrostatic bulging is not only important as a material property test,
but also as a forming operation. Thus, a number of theoretical investiga-

tions, dealing with axisymmetric hydrostatic bulging (Fig. 2) has appeared

in the literature.

The classical analysis of bulging is the one by Hill [23]. His solu-
tions are, however, special ones. Instead of analyzing deformation with
a given stress-strain characteristic, Hill first adopted special kinematic
assumptions and from them deducted the necessary stress-strain character-
istics which satisfy all the governing equations under the prescribed
kinematic mode. The kinematic assumptions are first, that any material

element describes a circular path which is, moreover, orthogonal to the
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Figure 2 Schematic view of hydrostatic bulging.

momentary profile, and second, that circumferential strain is numerically
equal to the tangential strain. The required stress-strain characteristic
is found to be an exponential type. Hill's other solution on a linear
workhardening solid uses the method of successive approximation by adopting
a yield criterion which is neither von Mises nor Tresca, for the purpose
of mathematical simplicity.

Analyses of work by Woo [24], Yamada [25], and Wang [26] are based
upon the realistic choices of stress-strain characteristics and the yield
criterion. In applying the deformation theory of rigid plasticity, Wang
experiences a mathematical difficulty and attributes this to the fact that
the differential equations associated with the deformation theory possesses
a singularity which has the effect of restricting the range of calculation
within a certain value of the polar strain. Besides, the agreement of
deformation theory predictions with the experiment is rather poorer than
the incremental theory prediction [27].

In applying the incremental theory of rigid plasticity, researchers
experience a difficulty in satisfying the boundary condition at the fixed
edge, i.e., ée = 0. To avoid this difficulty, Woo uses the deformation
theory, while Yamada reasons that introducing an elastic strain component
into the formulation will resolve this ''mathematical difficulty" (in
Yamada's terms) and turns to the elasto-plastic constitutive law. Another
theoretical work of interest comes from Wang, using the parametric repre-

sentation of the stresses.
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The only published solution on hydrostatic bulging using the finite-

s

element method is the one by Iseki et al. [28], with the incremental theory

of elasto-plasticity. ;

2. Computational procedures

In adopting the finite-element model to hydrostatic bulging, it is k

necessary to reconsider the external work increment term, since the pressure

is uniform over the entire surface of a closed shell. In this case the

increment of external work may be written as [29], [30],
Aw = pVV, (45)

where VV is the increase of the volume enclosed by the deformed sheet and p
is the pressure acting on the deformed configuration.

As an initial condition, Hill's special solution is utilized. 1In
other words, the initial profile of the bulge is assumed to be a part of
a sphere whose radius is given by r = % (%; + h), where a 1is the radius
of the original blank and h is the polar height at the moment. With this
geometry, a pressure p is prescribed. This pressure should be greater,
at least, than the pressure which makes the sheet having initial geometry
everywhere plastic. The initial guess on the incremental displacement
is also obtained from Hill's special solution by assuming normal trajectory
of the element particle to the bulge profile. The program for computing
the initial guess is given in Appendix A.

When a converged solution is obtained for the given pressure, a new
bulge profile is determined from the initial bulge profile and incremental
displacement grid. Then the pressure is assigned a higher value and the
converged solution for the previous step is used as the initial guess for

the incremental displacement field and the computation continues in this

way. The program for the analysis of hydraulic bulge is given in Appendix B.
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3. Results and discussion

To examine the validity of the present FEM for hydrostatic bulging,
the solution is compared with those achieved by the elasto-plastic FEM
and the experiment.

The following conditions were employed for the comparison with the

elasto-plastic FEM:

Workhardening characteristics: o = 105(.0019 + E)O°2 x logkg/m2

1.036(.0019 + £)°:% x 10°N/m?
Thickness: 3.0 x 10 'm (= 0.3 mm)
Radius of the sheet: 2.4 x 10 °m (= 24 mm)

Anisotropy parameter: 1.0

An identical problem was also solved by Yamada [25], using the finite-
difference method with the elastic-plastic theory. Fig. 3 shows the rela-
tionship between hydrostatic pressure and the polar thickness strain. The
solid line represents the elasto-plastic FEM (and also the finite-difference
method) and the points indicate the solution given by the rigid-plastic FEM.
The deviation of the first point by the rigid-plastic FEM is thought to
reflect the approximation involved in the initial condition that the sheet
is everywhere plastic and that the initial geometry is a part of a sphere.
The solution can be improved numerically by taking a smaller value of h

in generating the initial condition. Nevertheless, the solutions after
this first step are in extremely good agreement with the elasto-plastic FEM
and any disturbance in the initial conditions does not matter after an
initial deformation of a small magnitude. The pressure increment is raised

by twice after some deformation and it is to be noted that the solutions
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with the larger pressure increment size are still accurate. This means
that the method is computationally economical with a reasonable accuracy.
After the last point in the diagram the solution diverges and it is thought
that the pressure maximum has been reached. The convergence is excellent;
in every step, five to seven iterations seem to be sufficient. Fig. 4(a),
(b) show the comparisons of strain distributions. The circumferential strain
distributions are in good agreement. The tangential strain distribution by
the rigid-plastic FEM deviates somewhat at the edge from that by the elasto-
plastic FEM. The tangential strain is more sensitive to the method employed
than the circumferential strain, but this deviation of tangential strain is
not serious because the solution closely follows that by the finite-
difference method and we may conclude that the strain distribution is
accurately predicted. Fig. 5 shows the distributions of stresses when the
polar thickness strain is (-0.4). Fig. 6 shows the bulge profile at some
stages of deformation. A number of material elements are traced during
derormation and are shown on each bulge profile.

Next, the solution is compared with Mellor's [31] experimen<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>